Scientific Notation

	following is equal to $3a^0$ (c) $(3a)^0$					
(a) $(-3)^{-2}$ (b)	following represents a $(-1,000)^0$ (c) $(-4)^{-1}$	negative number? $(4)^{0} - (-3)^{0}$ (d) (-5) ⁻³			
Seclarte each exponential expression.						
15. 7 ⁻²	16. 4 ⁻¹	17. -7^{-2}	18. -4^{-1}	19. $\frac{2}{(-4)^{-3}}$		
$\frac{2^{-3}}{3^{-2}}$ (2.00) 1.2	21. $\frac{5^{-1}}{4^{-2}}$	22. $\left(\frac{1}{2}\right)^{-3}$	23. $\left(\frac{1}{5}\right)^{-3}$	24. $\left(\frac{2}{3}\right)^{-2}$		
$= \left(\frac{4}{5}\right)^{-2}$	26. $3^{-1} + 2^{-1}$	27. $4^{-1} + 5^{-1}$	28. 8 ⁰	29. 12 ⁰		
the second second second	31. $(-4)^0$	32. -2^0	33. $3^0 - 4^0$	34. $-8^{\circ} - 7^{\circ}$		

In order to raise a fraction to a negative power, we may change the fraction to its and change the exponent to the _____ of the original exponent.

Explain in your own words how we raise a power to a power.

S. Which one of the following is correct?

(a)
$$-\frac{3}{4} = \left(\frac{3}{4}\right)^{-1}$$
 (b) $\frac{3^{-1}}{4^{-1}} = \left(\frac{4}{3}\right)^{-1}$ (c) $\frac{3^{-1}}{4} = \frac{3}{4^{-1}}$ (d) $\frac{3^{-1}}{4^{-1}} = \left(\frac{3}{4}\right)^{-1}$

Which one of the following is incorrect?

(a) $(3r)^{-2} = 3^{-2}r^{-2}$ (b) $3r^{-2} = (3r)^{-2}$ (c) $(3r)^{-2} = \frac{1}{(3r)^2}$ (d) $(3r)^{-2} = \frac{r^{-2}}{9}$

the product, quotient, and power rules to simplify each expression. Write answers only positive exponents. Assume that all variables represent nonzero real numbers.

39. $x^{12} \cdot x^4$ so och possute	40. $\frac{x^{12}}{x^4}$	41. $\frac{5^{17}}{5^{16}}$	42. $\frac{3^{12}}{3^{13}}$
43. $\frac{3^{-5}}{3^{-2}}$	44. $\frac{2^{-4}}{2^{-3}}$	45. $\frac{9^{-1}}{9}$	46. $\frac{12}{12^{-1}}$
47. $t^5 t^{-12}$	48. $p^5 p^{-6}$	49. $(3x)^2$	50. $(-2x^{-2})^2$
51. $a^{-3}a^2a^{-4}$	52. $k^{-5}k^{-3}k^4$	53. $\frac{x^7}{x^{-4}}$	54. $\frac{p^{-3}}{p^5}$
55. $\frac{r^3r^{-4}}{r^{-2}r^{-5}}$	56. $\frac{z^{-4}z^{-2}}{z^3z^{-1}}$	57. $7k^2(-2k)(4k^{-5})$	58. $3a^2(-5a^{-6})(-2a)$
59. $(z^3)^{-2}z^2$	60. $(p^{-1})^3 p^{-4}$	61. $-3r^{-1}(r^{-3})^2$	62. $2(y^{-3})^4(y^6)$
63. $(3a^{-2})^3(a^3)^{-4}$	64. $(m^5)^{-2}(3m^{-2})^3$	65. $(x^{-5}y^2)^{-1}$	66. $(a^{-3}b^{-5})^2$
67. $(2p^2q^{-3})^2(4p^{-3}q)^2$	68. $(-5y^2z^{-4})^2(2yz^5)^{-3}$	69. $\frac{(p^{-2})^3}{5p^4}$	70. $\frac{(m^4)^{-1}}{9m^3}$
71. $\frac{4a^5(a^{-1})^3}{(a^{-2})^{-2}}$	72. $\frac{12k^{-2}(k^{-3})^{-4}}{6k^5}$	73. $\frac{(-y^{-4})^2}{6(y^{-5})^{-1}}$	74. $\frac{2(-m^{-1})^{-4}}{9(m^{-3})^2}$
75. $\frac{(2k)^2m^{-5}}{(km)^{-3}}$	76. $\frac{(3rs)^{-2}}{3^2r^2s^{-4}}$		

Many students believe that the pairs of expressions shown in Exercises 77–79 represent the same quantity. This is wrong. Show that each expression in the pair represents a different quantity by replacing x with 2 and y with 3.

jerem quanny by repu	cing x with 2 and y with 5.		
77. $(x+y)^{-1}$; $x^{-1}+y$	y^{-1} 78. $(x+y)^2$;	$x^2 + y^2$	79. $(x^{-1} + y^{-1})^{-1}$; $x + y$
80. Which one of the	following does not represent	the reciprocal of $x (x \neq 0)$?	
(a) x^{-1} (b) $\frac{1}{2}$	$\frac{1}{x}$ (c) $\left(\frac{1}{x^{-1}}\right)^{-1}$ (d) -	x	
Write each number in s	cientific notation.		
81. 230	82. 46,500	83. .02	84. .0051
Write each number with	hout scientific notation.		
85. 6.5×10^3	86. 2.317×10^5	87. 1.52×10^{-2}	88. 1.63×10^{-4}
Use scientific notation	to perform each of the followi	a di sense di sense di sense de la sense di se	000456.000

89.	.002 × 3,900	90.	<u>.009 × 600</u>	91.	.0004 × 56,000	
	.000013	0.0000000000000000000000000000000000000	.02		.000112	
92.	.018 × 20,000	03	840,000 × .03	04	28 × .0045	
92.	$300 \times .0004$	93.	$.00021 \times 600$	74.	$140 \times 1,500$	

Use scientific notation to work the following problems. Use a calculator as necessary.

- **95.** The distance to the sun is 9.3×10^7 mi. How long would it take a rocket, traveling at 2.9×10^3 mph, to reach the sun?
- **96.** A *light-year* is the distance that light travels in one year. Find the number of miles in a light-year if light travels 1.86×10^5 mi per second.
- **97.** Use the information given in the previous two exercises to find the number of minutes necessary for light from the sun to reach the earth.
- **98.** A computer can execute one addition in 1.4×10^{-7} seconds. How long would it take the computer to execute a trillion (10¹²) additions? Give the answer in seconds and then in hours.
- **99.** The planet Mercury has a mean distance from the sun of 3.6×10^7 mi, while the mean distance of Venus from the sun is 6.7×10^7 mi. How

long would it take a spacecraft traveling at 1.55×10^3 mph to travel the distance represented by the difference of these two planets' mean distances from the sun?

- 100. When the distance between the centers of the moon and the earth is 4.60×10^8 m, an object on the line joining the centers of the moon and the earth exerts the same gravitational force on each when it is 4.14×10^8 m from the center of the earth. How far is the object from the center of the moon at that point?
- **101.** Assume that the volume of the earth is 5×10^{14} m³ and that the volume of a bacterium is 2.5×10^{-16} m³. If the earth could be packed full of bacteria, how many would it contain?
- **102.** Our galaxy is approximately 1.2×10^{17} km across. Suppose a spaceship could travel at 1.5×10^5 km per second (half the speed of light). Find the approximate number of years needed for the spaceship to cross the galaxy.

Selected Answers

3. 25/9 17 - 1/4919. -128 1. 625 15. 1/49 **5.** -32 7. -8 13. (c) **31.** 1 **33.** 0 35. reciprocal: additive **21.** 16/5 **23.** 125 **25.** 25/16 **27.** 9/20 29. 1 41. 5 43. 1/27 45. 1/81 47. $1/t^7$ **49.** $9x^2$ 51. 1/a⁵ inverse **37.** (d) **39.** x^{16} **63.** 27/*a*¹⁸ 65. x^{5}/y^{2} 67. $64/(p^2q^4)$ **53.** x^{11} 55. r^6 57. $-56/k^2$ **59.** $1/z^4$ 61. $-3/r^7$ **69.** $1/(5p^{10})$ **71.** $4/a^2$ **73.** $1/(6y^{13})$ **75.** $4k^5/m^2$ **77.** 1/5; 5/6; $1/5 \neq 5/6$ **79.** 6/5; 5; $6/5 \neq 5$ **91.** 2×10^5 or 200,000 **83.** 2×10^{-2} **89.** 6×10^5 or 600,000 81. 2.3×10^2 **85.** 6,500 **87.** .0152 **93.** 2×10^5 or 200,000 **95.** 3.2×10^4 hr **97.** 8.3 min **99.** 2×10^4 hr **101.** 2×10^{30} bacteria