Universal Set (U)

Includes all things under discussion.

Complement of a Set

 $A' = \{x \mid x \in U \text{ and } x \notin A\}.$

Subset of a Set

 $A \subseteq B$ if B contains every element of A.

Proper Subset of a Set

 $A \subset B$ if $A \subseteq B$ and $A \neq B$.

Number of Subsets (Formulas)

Any set with n elements has 2^n subsets and $2^n - 1$ proper subsets.

2.3 Operations with Sets

Common Set Operations

Let A and B be any sets, with U the universal set.

The **complement** of A, written A', is

The **intersection** of *A* and *B* is

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}.$$

The **union** of A and B is

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$$

The **difference** of A and B is

$$A - B = \{x \mid x \in A \text{ and } x \notin B\}.$$

The Cartesian product of A and B is

$$A \times B = \{(x, y) \mid x \in A \text{ and } y \in B\}.$$

Cardinal Number of a Cartesian Product (Formula)

If n(A) = a and n(B) = b, then $n(A \times B) = ab$.

Common Methods of Set Notation

Method	Example	
1. Word description	The set of all students	
2. Listing	$\{15, 25, 35, \ldots, 95\}$	
3. Set-builder	$\{x \mid x \text{ is a rational number}\}\$	

Cardinal Number of a Set

n(A) is the number of elements in set A Example: $n(\{2, 4, 6\}) = 3$

A is **finite** if n(A) = a counting number.

Otherwise, A is **infinite.**

Set Equality

A=B if A and B contain exactly the same elements. Example: $\{a,b,c\}=\{c,a,b\}$

De Morgan's Laws

For any sets A and B,

$$(A \cap B)' = A' \cup B'$$

and $(A \cup B)' = A' \cap B'$.

2.4 Surveys and Cardinal Numbers

Cardinal Number Formula

For any sets A and B, $n(A \cup B) = n(A) + n(B) - n(A \cap B)$.

2.5 Cardinal Numbers of Infinite Sets

Two sets are **equivalent** $(A \sim B)$ if they can be placed in a one-to-one correspondence. For example, A and B below are equivalent.

$$A = \{1, 3, 5, 7, 9\}$$

$$\uparrow \uparrow \uparrow \uparrow \uparrow$$

$$B = \{a, e, i, o, u\}$$

Cardinal Numbers of Infinite Number Sets

Infinite Set	Cardinal Number
Natural or counting numbers	×o
Whole numbers	X ₀
Integers	× ₀
Rational numbers	×o
Irrational numbers	C
Real numbers	c