Summary

Symbols Used in this Chapter

3.1 Statements and Quantifiers

Universal Quantifiers all, each, every, no(ne) **Existential Quantifiers** some, there exists, (for) at least one **Negations of Quantified Statements**

3.2 Truth Tables

Truth Tables for Negation, Conjunction, and Disiunction

De Morgan's Laws

For any statements p and q ,

 $\neg(p \vee q) \equiv \neg p \wedge \neg q$ $-(p \wedge q) \equiv -p \vee -q.$

Two statements are equivalent if they have the same truth value in every possible situation.

A logical statement having n component statements will have $2ⁿ$ lines in its truth table.

3.3 The Conditional

Truth Table for the Conditional if p, then q

$p \wedge \neg q$ Negation of $p \rightarrow q$

The disjunction $\sim p \vee q$ is equivalent to $p \rightarrow q$.

3.4 More on the Conditional

Statements Related to the Conditional

 $ot (q)$ $dot p)$

Various Translations of $p \rightarrow q$

The conditional $p \rightarrow q$ can be translated in any of the following ways.

Truth Table for the Biconditional p if and only if q

Negations of $p \leftrightarrow q$

The biconditional has three equivalent negations:

 $\neg p \leftrightarrow q \equiv p \leftrightarrow \neg q \equiv (p \land \neg q) \lor (q \land \neg p)$

Proofs

Direct Proof

To prove $p \rightarrow q$, we make a chain of obvious implications $p \rightarrow r \rightarrow s \rightarrow ... \rightarrow q$

Proof by Contrapositive

To prove $p \rightarrow q$, we prove its contrapositive $\sim q \rightarrow \sim p$. Since it is equivalent with the direct statement, it is valid.

Proof by Contradiction

To prove a statement by contradiction, start by assuming the opposite of what you would like to prove. Then show that the consequences of this premise are impossible (lead to a contradiciton). This means that your original statement must be true.