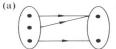
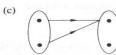
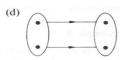

Functions

1. State which of the following arrow diagrams show functions.







2. State which of the following arrow diagrams show: (i) a one-to-one function mapping into the co-domain, (ii) a one-to-one function mapping onto the co-domain, (iii) a many-to-one function mapping into the co-domain.

3. State the range of each of the following 'function machines' for the domains shown.

$$\begin{vmatrix} -2 & 0 & -1 \\ 1 & 0 & 2 \end{vmatrix} \rightarrow \boxed{f: x \rightarrow 3x - 2} \rightarrow \boxed{?}$$

- **Draw** arrow diagrams for the functions $f: x \to x + 2$, $g: x \to x^2 + 1$ and $h: x \to (x + 1)^2$ for the domain $\{-2, -1, 0, 1, 2\}$ and state the mange of each function for this domain.
- **Solution** Draw arrow diagrams for the functions $f: x \to |x|, g: x \to |x| 1$ and $||\mathbf{k}||_{x} \rightarrow |x-1|$ for the domain $\{-2, -1, 0, 1, 2\}$ and state the range of each function for this domain.
- f(x) = 2x + 3 find
- (a) f(2), (b) f(-1), (c) f(6), (d) the value of a if f(a) = a.
- $\mathbb{T}_{\mathbf{z}} \mathbb{F}_{\mathbf{g}(x)} = x^2 6 \text{ find}$
 - (a) g(4), (b) g(-4), (c) g(2), (d) the possible values of a if g(a) = a.
- **III** $f(x) = 2x^2$ and g(x) = 3 x find
- (a) f(3), (b) f(-3), (c) g(-3), (d) the possible values of a if f(a) = g(a).
- The function f is given by f(x) = ax + b. If f(3) = 3 and f(4) = 5, find a and b.
- The function g is given by $g(x) = ax^2 b$. If g(2) = 5 and g(-1) = 2, find the values of a and b and hence find g(-4).
- **Each** of the following functions maps an element x of the domain onto ins image y, i.e. f(x) = y. Find the range of each function for the given domains and state whether the function is one-to-one or many-to-one.
 - (a) $f: x \to x + 3$ with domain $\{x: 0 \le x \le 4\}$,
 - (b) $f: x \to x 2$ with domain $\{x: 0 \le x \le 4\}$.
 - ((c) $f: x \to 2x$ with domain $\{x: 0 \le x \le 3\}$,
 - (d) $f: x \to 2x$ with domain $\{x: -3 \le x \le 3\}$.
 - (e) $f: x \to x^2$ with domain $\{x: -3 \le x \le 3\}$.
 - (f) $f: x \to \sqrt{x}$ with domain $\{x: 0 \le x \le 25\}$.
 - with domain $\{x: -3 \le x \le 3\}$, (g) $f: x \to |x|$
 - (h) $f: x \to x^2$ with domain \mathbb{R} ,
 - (i) $f: x \to |x|$ with domain \mathbb{R} ,
 - with domain $\{x: x \ge 1\}$,
 - (k) $f: x \to x^2 + 4$ with domain \mathbb{R} ,
 - ① $f: x \to \frac{1}{x-1}$ with domain $\{x \in \mathbb{R}: x \neq 1\}$.
- \blacksquare The following functions map an element x of the domain onto its image r. i.e. $f: x \to y$. For each function state
 - (i) the domain for which the function is defined.

Answers

- 1. (a) and (d) 2. (i) (b); (ii) (d); (iii) (c) 3. (a) $\{-8, -5, -2, 1, 4\}$, (b) $\{-1, 1, 7\}$
- **4.** {0, 1, 2, 3, 4}, {1, 2, 5}, {0, 1, 4, 9} **5.** {0, 1, 2}, {-1, 0, 1}, {0, 1, 2, 3}
- 6. (a) 7 (b) 1 (c) 15 (d) -3 7. (a) 10 (b) 10 (c) -2 (d) 3 or -2
- **8.** (a) 18 (b) 18 (c) 6 (d) $-1\frac{1}{2}$, 1 **9.** 2, -3 **10.** 1, -1, 17
- 11. (a) $\{y: 3 \le y \le 7\}$ one-to-one
 - (b) $\{y: |y| \le 2\}$ one-to-one
 - (c) $\{y: 0 \le y \le 6\}$ one-to-one (d) $\{y: |y| \le 6\}$ one-to-one
 - (e) $\{y: 0 \le y \le 9\}$ many-to-one
 - (f) $\{y: 0 \le y \le 5\}$ one-to-one (g) $\{y: 0 \le y \le 3\}$ many-to-one
 - (h) $\{y: y \ge 0\}$ many-to-one (i) $\{y: y \ge 0\}$ many-to-one (j) $\{y: 0 < y \le 1\}$ one-to-one
 - (k) $\{y: y \ge 4\}$ many-to-one (l) $\{y \in \mathbb{R}: y \ne 0\}$ one-to-one
- **12.** (a) (i) \mathbb{R} (ii) \mathbb{R} (b) (i) \mathbb{R} (ii) $\{y \in \mathbb{R}: y \ge 0\}$ (c) (i) $\{x \in \mathbb{R}: x \ne 0\}$ (ii) $\{y \in \mathbb{R}: y \ne 0\}$ (d) (i) $\{x \in \mathbb{R}: x \neq 3\}$ (ii) $\{y \in \mathbb{R}: y \neq 0\}$

Graphs

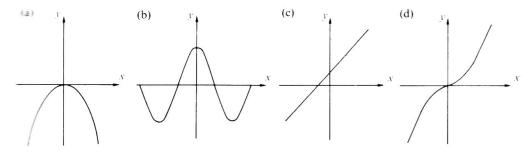
- 1. If $A = \{3, 4, 5, 6\}$ and $B = \{1, 2, 3, 4\}$, write down all the ordered pairs (x, y) such that $x \in A$, $y \in B$ and x is twice y. Moladisation of visit studied moladon and assets small
- 2. If $A = \{2, 3, 4\}$, write down all the ordered pairs (x, y) such that $x \in A$, and like it as grains $y \in A$ and x is greater than y.
- 3. If $A = \{-2, -1, 0, 1, 2\}$ and $B = \{0, 1, 2, 3, 4\}$, write down all the ordered pairs (x, y) such that $x \in A$, $y \in B$ and $y = x^2$.
- 4. Three elements of the cartesian product $A \times B$ are (2, 3), (2, 4) and (3, 5). If there are six such ordered pairs in the cartesian product, find
 - (a) the sets A and B,
 - (b) the other three elements of $A \times B$, A = a smill add no sill landog garden both said to distance the
 - (c) set C, a subset of A \times B, such that C = $\{(x, y): x \in A, y \in B \text{ and } x = y\}$.
- 5. If $A = \{1, 2, 3\}$ and $B = \{1, 2, 3, 4, 5, 6\}$, find the ordered pairs of set C given that $C = \{(x, y): x \in A, y \in B \text{ and } y = 2x\}.$
- 6. State which of the following points lie on the line y = 8 3x, (2, 2), (-1, 5), (1, 5), (4, -4).
- 7. If all of the following points lie on the line y = 2x 6, find the values of a, b, c, d and e: (5, a), (2, b), (-2, c), (d, 2), (e, 8).
- 8. If the point (2, 2) lies on the line y = ax 4, find the value of a.
- 9. If the points (2, 1) and (-2, -11) lie on the line y = ax + b, find the values of a and b.
- 10. Find where the following lines cut (i) the y-axis (ii) the x-axis.
 - (a) v = x 4(d) $y = \frac{1}{2}x + 3$
 - (e) y + 2x = 8 (f) y + 5x = 3
- (b) v = 2x 4 (c) v = 12 2x

 - (g) 2y 5x = 12 (h) $y = x^2 3x + 2$ (i) $y = x^2 + x 6$

For each of the functions in questions 11 to 20, (a) write down the equation of the function, (b) construct a table of values for the given domain,

- (c) plot the graph of the function for that domain.
- 11. $f: x \to x + 1$ for $|x| \le 3$

12. $f: x \to x - 2$ for $|x| \le 4$


- 13. $f: x \to 2x + 3$ for $|x| \le 3$
- 14. $f: x \to x$ for $-2 \leqslant x \leqslant 4$

Answers

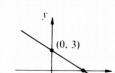
- **1.** (4, 2), (6, 3) **2.** (3, 2), (4, 2), (4, 3) **3.** (-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4)
- **4.** (a) $A = \{2, 3\}, B = \{3, 4, 5\}$ (b) (2, 5), (3, 3), (3, 4) (c) $\{(3, 3)\}$ **5.** (1, 2), (2, 4), (3, 6)
- **6.** (2, 2), (1, 5), (4, -4) **7.** 4, -2, -10, 4, 7 **8.** 3 **9.** 3, -5
- **10.** (a) (i) (0, -4) (ii) (4, 0) (b) (i) (0, -4) (ii) (2, 0) (c) (i) (0, 12) (ii) (6, 0)
 - (d) (i) (0, 3) (ii) (-6, 0) (e) (i) (0, 8) (ii) (4, 0) (f) (i) (0, 3) (ii) $(\frac{3}{5}, 0)$ (g) (i) (0, 6) (ii) $(-2\frac{2}{5}, 0)$ (h) (i) (0, 2) (ii) (1, 0) and (2, 0)
 - (i) (i) (0, -6) (ii) (-3, 0) and (2, 0).

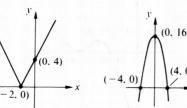
Parity

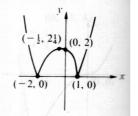
- L Show that each of the following functions are odd functions:
 - (a) f(x) = 7x,
- (b) $f(x) = x^3 + x$,
- (c) $f(x) = 2x^3 3x$.
- 2 Show that each of the following functions are even functions:
- (a) $f(x) = 4x^2$,
- (b) $f(x) = 2 + x^2$,
- (c) $f(x) = 3x^2 + 2|x|$.
- 3. For each of the following functions, state whether they are even, odd or neither of these:
- (a) $f(x) = 4 3x^2$, (b) $f(x) = 3x^2 + x$, (c) $f(x) = x \frac{1}{x}$,
- (d) $f(x) = x^2 + |x|$, (e) $f(x) = x^3 + |x|$.
- 4. For each of the following graphs, state whether they are graphs of odd functions, even functions or neither of these.

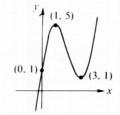
- 5. Find the equations of the lines obtained if each of the following lines is reflected in the line v = x.
 - (a) $y = \frac{x}{3}$, (b) y = 4 x, (c) y = 2x 4, (d) $y = \frac{1}{x + 2}$

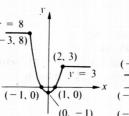
Answers

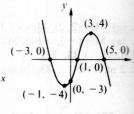

- (d) even (e) neither 3. (a) even (b) neither (c) odd
- 4. (a) even (b) even (c) neither (d) odd.
- 5. (a) y = 3x (b) y = 4 x (c) $y = \frac{x+4}{2}$ (d) $y = \frac{1}{x} 2$

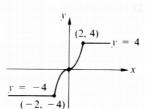

Boundedness and Extrema

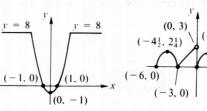

- 1. Inspect boundedness and extrema for f: y=|x|
- 2. Inspect boundedness and extrema for $g: y=1-x^2$
- 3. Inspect boundedness and extrema for $f: y = \frac{|X|}{|X|}$

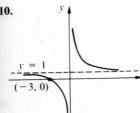

Find the global and local extrema of the function. State whether it is bounded above, below, both or neither.

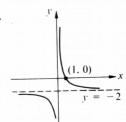

4. (a)



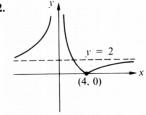


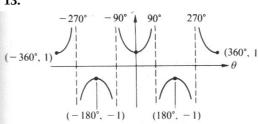


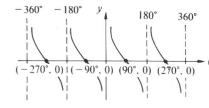


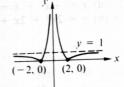

7.

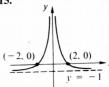
5.






12.




13.

14.

Monotonicity and Periodicity

- 1. State the intervals of monotonicity for the functions in exercises 4 to 12 in the previous section.
- 2. Which of the functions are periodic? State the period.

Answers (Boundedness and Extrema)

- 1. Min at (0, 0), bounded below 2. Max at (0, 1), bounded above 3. Min = -1, Max = 1
- 4. (a) no extrema, unbounded (b) Min at (-2, 0), bounded below
 - (c) Max at (0, 16), bounded above
 - (d) local Max at $(-\frac{1}{2}, \frac{21}{4})$, global Min (-2, 0) and at (1, 0), bounded below
- 5. local Max (1, 5) and local Min at (3, 1), unbounded
- 6. (a) global Max 8 for all $x \le -3$, global Min at (0, -1) local Max 3 for all $x \ge 2$, bounded
 - (b) Max at (1, 3), local Min at (-1,-1), bounded above
 - (c) local Max at (3, 4), local Min at (-1,-4), unbounded
- 7. Max 4 for all $x \ge 2$, Min -4 for all $x \le -2$
- 8. Max 8, Min at (0, -1)
- 9. local maximum $2\frac{1}{4}$ when $x = 1\frac{1}{2} + 6k$ where k is integer, global minimum is 0 when x is a multiple of 3, bounded
- 10. no extrema, unbounded
- 11. no extrema, unbounded
- 12. Min at (4, 0), below
- 13. local maxima of -1 when x is an odd multiple of 180°, local minima of 1 when x is a multiple of 360°, unbounded
- 14. no extrema, unbounded
- 15. Min at (-2, 0) and (2, 0), below 16. bounded below

Answers (Monotonicity)

4. (a) decreasing

- (b) dec. in $(-\infty, -2)$, inc. in $(-2, +\infty)$
- (c) inc. in $(-\infty, 0)$, dec. in $(0, +\infty)$
- (d) inc. in $(-\infty, -2)$ and $(-\frac{1}{2}, 1)$,
- dec. in $(-2, -\frac{1}{2})$ and $(1, +\infty)$
- 5. inc. in $(-\infty, 1)$ and $(3,+\infty)$, dec. in (1, 3)
- 6. (a) const. in $(-\infty, -3)$ and $(2, +\infty)$, dec. in (-3, 0), inc. in (0, 2)
 - (b) const. in $(-\infty, -2)$, dec. in (-2, -1) and $(1, +\infty)$, inc. in (-1, 1)
 - (c) dec. in $(-\infty,-1)$ and $(3,+\infty)$, inc. in (-1,3)
- 7. const. in $(-\infty, -2)$ and $(2, +\infty)$, inc. in (-2, 2)
- 8. const. in $(-\infty, -3)$ and $(3, +\infty)$, dec. in (-3, 0), inc. in (0, 3)
- 9. there are many such intervals, e.g. inc. in (-6, -4.5) and (-3, 0), dec. in (-4.5, 3)
- 10. and 11. dec. in $(-\infty, 0)$ and $(0, +\infty)$ 12. inc in $(-\infty, 0)$ and $(4, +\infty)$, dec. in (0, 4)

Answers (Periodicity)

- 9. period p = 6
- 13. period $p = 360^{\circ}$

14. period $p = 180^{\circ}$